Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 209-217, 2019.
Article in English | WPRIM | ID: wpr-776892

ABSTRACT

Antifungal drug resistance is a significant clinical problem, and antifungal agents that can evade resistance are urgently needed. In infective niches, resistant organisms often co-existed with sensitive ones, or a subpopulation of antibiotic-susceptible organisms may evolve into resistant ones during antibiotic treatment and eventually dominate the whole population. In this study, we established a co-culture assay in which an azole-resistant Candida albicans strain was mixed with a susceptible strain labeled with green fluorescent protein to mimic in vivo conditions and screen for antifungal drugs. Fluconazole was used as a positive control to verify the validity of this co-culture assay. Five natural molecules exhibited antifungal activity against both susceptible and resistant C. albicans. Two of these compounds, retigeric acid B (RAB) and riccardin D (RD), preferentially inhibited C. albicans strains in which the efflux pump MDR1 was activated. This selectivity was attributed to greater intracellular accumulation of the drugs in the resistant strains. Changes in sterol and lipid compositions were observed in the resistant strains compared to the susceptible strain, and might increase cell permeability to RAB and RD. In addition, RAB and RD interfered with the sterol pathway, further aggregating the decrease in ergosterol in the sterol synthesis pathway in the MDR1-activated strains. Our findings here provide an alternative for combating resistant pathogenic fungi.


Subject(s)
ATP-Binding Cassette Transporters , Genetics , Metabolism , Antifungal Agents , Chemistry , Metabolism , Pharmacology , Azoles , Pharmacology , Biosynthetic Pathways , Genetics , Candida albicans , Chemistry , Metabolism , Cell Membrane , Chemistry , Metabolism , Coculture Techniques , Drug Resistance, Fungal , Ergosterol , Metabolism , Fungal Proteins , Genetics , Metabolism , Lipids , Chemistry , Molecular Structure , Permeability , Phenyl Ethers , Chemistry , Metabolism , Pharmacology , Sterols , Chemistry , Metabolism , Stilbenes , Chemistry , Metabolism , Pharmacology , Triterpenes , Chemistry , Metabolism , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL